Copied to
clipboard

G = C24.365C23order 128 = 27

205th non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.365C23, C23.524C24, C22.2202- (1+4), C22.3012+ (1+4), C23.195(C2×D4), (C22×C4).402D4, C23.4Q827C2, C23.7Q878C2, C23.11D458C2, C23.10D459C2, (C23×C4).426C22, (C2×C42).603C22, (C22×C4).134C23, C22.349(C22×D4), C24.3C2266C2, C4.96(C22.D4), (C22×D4).195C22, C2.37(C22.29C24), C23.65C23102C2, C2.C42.250C22, C2.25(C22.31C24), C2.45(C22.36C24), C2.25(C22.34C24), (C2×C4).383(C2×D4), (C2×C4⋊D4).40C2, (C2×C42⋊C2)⋊38C2, (C2×C4).658(C4○D4), (C2×C4⋊C4).355C22, C22.396(C2×C4○D4), C2.42(C2×C22.D4), (C2×C22⋊C4).215C22, SmallGroup(128,1356)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.365C23
C1C2C22C23C22×C4C22×D4C24.3C22 — C24.365C23
C1C23 — C24.365C23
C1C23 — C24.365C23
C1C23 — C24.365C23

Subgroups: 580 in 274 conjugacy classes, 100 normal (20 characteristic)
C1, C2 [×3], C2 [×4], C2 [×4], C4 [×4], C4 [×12], C22 [×3], C22 [×4], C22 [×24], C2×C4 [×8], C2×C4 [×40], D4 [×12], C23, C23 [×2], C23 [×20], C42 [×4], C22⋊C4 [×18], C4⋊C4 [×14], C22×C4 [×2], C22×C4 [×14], C22×C4 [×4], C2×D4 [×14], C24, C24 [×2], C2.C42 [×6], C2×C42 [×2], C2×C22⋊C4 [×14], C2×C4⋊C4 [×3], C2×C4⋊C4 [×6], C42⋊C2 [×4], C4⋊D4 [×4], C23×C4, C22×D4, C22×D4 [×2], C23.7Q8, C23.65C23 [×2], C24.3C22 [×2], C23.10D4 [×4], C23.11D4 [×2], C23.4Q8 [×2], C2×C42⋊C2, C2×C4⋊D4, C24.365C23

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C4○D4 [×4], C24, C22.D4 [×4], C22×D4, C2×C4○D4 [×2], 2+ (1+4) [×3], 2- (1+4), C2×C22.D4, C22.29C24, C22.31C24, C22.34C24 [×2], C22.36C24 [×2], C24.365C23

Generators and relations
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=1, e2=c, g2=b, eae-1=ab=ba, faf=ac=ca, ad=da, ag=ga, bc=cb, bd=db, be=eb, gfg-1=bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, fef=de=ed, df=fd, dg=gd, eg=ge >

Smallest permutation representation
On 64 points
Generators in S64
(1 47)(2 35)(3 45)(4 33)(5 55)(6 51)(7 53)(8 49)(9 52)(10 54)(11 50)(12 56)(13 57)(14 42)(15 59)(16 44)(17 38)(18 31)(19 40)(20 29)(21 36)(22 46)(23 34)(24 48)(25 41)(26 58)(27 43)(28 60)(30 62)(32 64)(37 61)(39 63)
(1 23)(2 24)(3 21)(4 22)(5 11)(6 12)(7 9)(8 10)(13 25)(14 26)(15 27)(16 28)(17 62)(18 63)(19 64)(20 61)(29 37)(30 38)(31 39)(32 40)(33 46)(34 47)(35 48)(36 45)(41 57)(42 58)(43 59)(44 60)(49 54)(50 55)(51 56)(52 53)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 27)(2 28)(3 25)(4 26)(5 39)(6 40)(7 37)(8 38)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)(17 49)(18 50)(19 51)(20 52)(33 58)(34 59)(35 60)(36 57)(41 45)(42 46)(43 47)(44 48)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(2 28)(4 26)(5 11)(6 32)(7 9)(8 30)(10 38)(12 40)(14 22)(16 24)(17 56)(18 61)(19 54)(20 63)(29 37)(31 39)(33 60)(34 36)(35 58)(41 43)(42 48)(44 46)(45 47)(49 64)(50 53)(51 62)(52 55)(57 59)
(1 5 23 11)(2 6 24 12)(3 7 21 9)(4 8 22 10)(13 29 25 37)(14 30 26 38)(15 31 27 39)(16 32 28 40)(17 42 62 58)(18 43 63 59)(19 44 64 60)(20 41 61 57)(33 49 46 54)(34 50 47 55)(35 51 48 56)(36 52 45 53)

G:=sub<Sym(64)| (1,47)(2,35)(3,45)(4,33)(5,55)(6,51)(7,53)(8,49)(9,52)(10,54)(11,50)(12,56)(13,57)(14,42)(15,59)(16,44)(17,38)(18,31)(19,40)(20,29)(21,36)(22,46)(23,34)(24,48)(25,41)(26,58)(27,43)(28,60)(30,62)(32,64)(37,61)(39,63), (1,23)(2,24)(3,21)(4,22)(5,11)(6,12)(7,9)(8,10)(13,25)(14,26)(15,27)(16,28)(17,62)(18,63)(19,64)(20,61)(29,37)(30,38)(31,39)(32,40)(33,46)(34,47)(35,48)(36,45)(41,57)(42,58)(43,59)(44,60)(49,54)(50,55)(51,56)(52,53), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,27)(2,28)(3,25)(4,26)(5,39)(6,40)(7,37)(8,38)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24)(17,49)(18,50)(19,51)(20,52)(33,58)(34,59)(35,60)(36,57)(41,45)(42,46)(43,47)(44,48)(53,61)(54,62)(55,63)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (2,28)(4,26)(5,11)(6,32)(7,9)(8,30)(10,38)(12,40)(14,22)(16,24)(17,56)(18,61)(19,54)(20,63)(29,37)(31,39)(33,60)(34,36)(35,58)(41,43)(42,48)(44,46)(45,47)(49,64)(50,53)(51,62)(52,55)(57,59), (1,5,23,11)(2,6,24,12)(3,7,21,9)(4,8,22,10)(13,29,25,37)(14,30,26,38)(15,31,27,39)(16,32,28,40)(17,42,62,58)(18,43,63,59)(19,44,64,60)(20,41,61,57)(33,49,46,54)(34,50,47,55)(35,51,48,56)(36,52,45,53)>;

G:=Group( (1,47)(2,35)(3,45)(4,33)(5,55)(6,51)(7,53)(8,49)(9,52)(10,54)(11,50)(12,56)(13,57)(14,42)(15,59)(16,44)(17,38)(18,31)(19,40)(20,29)(21,36)(22,46)(23,34)(24,48)(25,41)(26,58)(27,43)(28,60)(30,62)(32,64)(37,61)(39,63), (1,23)(2,24)(3,21)(4,22)(5,11)(6,12)(7,9)(8,10)(13,25)(14,26)(15,27)(16,28)(17,62)(18,63)(19,64)(20,61)(29,37)(30,38)(31,39)(32,40)(33,46)(34,47)(35,48)(36,45)(41,57)(42,58)(43,59)(44,60)(49,54)(50,55)(51,56)(52,53), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,27)(2,28)(3,25)(4,26)(5,39)(6,40)(7,37)(8,38)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24)(17,49)(18,50)(19,51)(20,52)(33,58)(34,59)(35,60)(36,57)(41,45)(42,46)(43,47)(44,48)(53,61)(54,62)(55,63)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (2,28)(4,26)(5,11)(6,32)(7,9)(8,30)(10,38)(12,40)(14,22)(16,24)(17,56)(18,61)(19,54)(20,63)(29,37)(31,39)(33,60)(34,36)(35,58)(41,43)(42,48)(44,46)(45,47)(49,64)(50,53)(51,62)(52,55)(57,59), (1,5,23,11)(2,6,24,12)(3,7,21,9)(4,8,22,10)(13,29,25,37)(14,30,26,38)(15,31,27,39)(16,32,28,40)(17,42,62,58)(18,43,63,59)(19,44,64,60)(20,41,61,57)(33,49,46,54)(34,50,47,55)(35,51,48,56)(36,52,45,53) );

G=PermutationGroup([(1,47),(2,35),(3,45),(4,33),(5,55),(6,51),(7,53),(8,49),(9,52),(10,54),(11,50),(12,56),(13,57),(14,42),(15,59),(16,44),(17,38),(18,31),(19,40),(20,29),(21,36),(22,46),(23,34),(24,48),(25,41),(26,58),(27,43),(28,60),(30,62),(32,64),(37,61),(39,63)], [(1,23),(2,24),(3,21),(4,22),(5,11),(6,12),(7,9),(8,10),(13,25),(14,26),(15,27),(16,28),(17,62),(18,63),(19,64),(20,61),(29,37),(30,38),(31,39),(32,40),(33,46),(34,47),(35,48),(36,45),(41,57),(42,58),(43,59),(44,60),(49,54),(50,55),(51,56),(52,53)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,27),(2,28),(3,25),(4,26),(5,39),(6,40),(7,37),(8,38),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24),(17,49),(18,50),(19,51),(20,52),(33,58),(34,59),(35,60),(36,57),(41,45),(42,46),(43,47),(44,48),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(2,28),(4,26),(5,11),(6,32),(7,9),(8,30),(10,38),(12,40),(14,22),(16,24),(17,56),(18,61),(19,54),(20,63),(29,37),(31,39),(33,60),(34,36),(35,58),(41,43),(42,48),(44,46),(45,47),(49,64),(50,53),(51,62),(52,55),(57,59)], [(1,5,23,11),(2,6,24,12),(3,7,21,9),(4,8,22,10),(13,29,25,37),(14,30,26,38),(15,31,27,39),(16,32,28,40),(17,42,62,58),(18,43,63,59),(19,44,64,60),(20,41,61,57),(33,49,46,54),(34,50,47,55),(35,51,48,56),(36,52,45,53)])

Matrix representation G ⊆ GL8(𝔽5)

01000000
10000000
00400000
00040000
00003100
00002200
00000024
00000033
,
10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
40000000
04000000
00100000
00010000
00004000
00000400
00000040
00000004
,
10000000
01000000
00400000
00040000
00004000
00000400
00000040
00000004
,
30000000
03000000
00010000
00100000
00000010
00000001
00004000
00000400
,
10000000
04000000
00100000
00040000
00001000
00004400
00000040
00000011
,
10000000
01000000
00100000
00010000
00004300
00001100
00000043
00000011

G:=sub<GL(8,GF(5))| [0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,4,3],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,3,1] >;

32 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4N4O···4T
order12···2222244444···44···4
size11···1448822224···48···8

32 irreducible representations

dim1111111112244
type+++++++++++-
imageC1C2C2C2C2C2C2C2C2D4C4○D42+ (1+4)2- (1+4)
kernelC24.365C23C23.7Q8C23.65C23C24.3C22C23.10D4C23.11D4C23.4Q8C2×C42⋊C2C2×C4⋊D4C22×C4C2×C4C22C22
# reps1122422114831

In GAP, Magma, Sage, TeX

C_2^4._{365}C_2^3
% in TeX

G:=Group("C2^4.365C2^3");
// GroupNames label

G:=SmallGroup(128,1356);
// by ID

G=gap.SmallGroup(128,1356);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,253,232,758,723,185,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=1,e^2=c,g^2=b,e*a*e^-1=a*b=b*a,f*a*f=a*c=c*a,a*d=d*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,g*f*g^-1=b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*e*f=d*e=e*d,d*f=f*d,d*g=g*d,e*g=g*e>;
// generators/relations

׿
×
𝔽